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Wavelet-based Exact Maximum Likelihood Estimation of
ARFlMA(p,d,q) Parameters

Alex C. Gonzaga' and Daniel C. Bonzo'

ABSTRACT

57

In this paper, we modify wavelets so that wavelet coefficients become statistically independent. Under standard
regularity conditions, we determine the distribution of the wavelet coefficients. Using the moving average

• representation of the ARFIMA(p,d,q) process, we obtain wavelet-based exact maximum likelihood estimators of the
ARFIMA(p,d,q) parameters. The corresponding Fisher information matrix is also derived.
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1. INTRODUCTION

There is ample evidence that the phenomenon of long memory occurs in various areas of human
endeavor such as in economics, telecommunications and hydrology. A classic example of a long­
memory process is the minimum water level of the Nile River, which is characterized by its
slowly decaying autocorrelations. Similar behavior has been observed in many hydrological,
geophysical, and climatological records (Beran, 1994). Granger, (1966) also noted long-range
dependence in economics. Recently, studies have been done on the presence of long-term
correlations in telecommunications traffic (see, e.g., Abry and Veitch, 1997). Long-memory
processes are also related to other dynamic areas of research such as self-similar processes and
fractals (Abry, Veitch and Flandrin, 1997), and unstable processes (Chan and Terrin, 1995). For
a comprehensive review on long-memory processes, see the monograph by Beran (1994).

Brockwell (1987) defmes a long-memory process as a stationary process for which the
autocorrelation p(k) - Ck; 2d-l as k~ 00. where C > 0 and d <0.5. In this case, the

autocorrelations decay to zero slowly at a hyperbolic rate. On the other hand, an ARMA process
{X}, is considered a short memory process since the autocorrelation between X, and XI+!

decreases rapidly at an exponential rate to zero as k ~ 00, that is, p(k) - CrA: .k = 1,2,..., where
C > 0 and 0 < r < 1. For our purpose, we refer to a process as intermediate memory, if d < 0

and ~::Ip(k)1 < 00. while long memory occurs when 0 < d < 0.5 and ~::Ip(k)1 =00.

The defmition of long memory processes or long-range dependence (LRD) tells us the behavior
of the autocorrelations as the lag goes to infmity but not the size of individual correlations. Time
series with arbitrarily small autocorrelations that tend to zero very slowly may be considered a

I College of Arts and Sciences, University of the Philippines Manila, Padre Faura St., Manila
2 School of Statistics, University of the Philippines Diliman, Quezon City

..

•



58 Gonzaga and Bonzo: Wavelet-based
Exact Maximum Likelihood Estimation

of ARFIMA(p,d,q) Parameters

..
long-memory process. To detect LRD, all autocorrelations must be considered simultaneously,
instead of taking them separately. This requires a very lengthy time series for detection of LRD
to be reliable. However, LRD allows for more reliable and precise prediction of remote future
values of the series (than short-memory processes).

A popular model for long-memory is the ARFIMA(p,d,q) process, a generalization of the well­
known ARIMA(p,d,q) model. In this paper, we analyze long memory processes using wavelets
(cf. Section 2.2, and Chui 1997).

Wavelets have emerged fairly recently as efficient tools for analyzing long-memory processes.
Their use could provide estimators of the LRD parameter which have relatively better statistical
properties and are more computationally efficient than some traditional non-wavelet estimators
(Abry and Veitch, 1997; Abry, Veitch and Flandrin, 1997).

Jensen (1994) obtained a maximum likelihood estimator of the ARFIMA(O,d,O) parameters.
However, his assumption of statistical independence of the wavelet coefficients is quite
questionable. To solve this problem, we modify the wavelets so that wavelet coefficients become
statistically independent. This allows us to derive maximum likelihood estimators of the
ARFIMA(p,d,q) parameters. Here, we use the moving average representation ofARFIMA(p,d,q)
process, under the usual regularity assumptions, to determine the distribution of its modified
wavelet transform. We then use this to derive the likelihood function for ARFIMA(p,d,q)
parameters. This then circumvents the usual estimation problems on ARFlMA(p,d,q) processes
(see, e.g., Taqqu, 1985 or Bonzo, 1995).

The organization of this paper is as follows. We firstly present an introduction .of
ARFIMA(p,d,q) process and wavelets in Section 2. Our main results are given in Section 3. We
then give some concluding remarks in Section 4.

2. PRELIMINARY CONCEPTS

In this section w.e present some concepts and standard results on ARFlMA(p,d,q) processes,
wavelets, and wavelet transforms that we use in the succeeding sections of this paper.

2.1 ARFIMA(p,d,q) Process

Long-memory processes are often modeled by means of the fractionally integrated
autoregressive moving average (ARFlMA) process. (For our purpose, we say that a' stochastic
process is stationary if it is covariance stationary.) An ARFlMA(p,d,q) process {X,J is a stationary
process such that

<1J(BXl - By X, =e(B)Z, (1)

where Z, is white noise; B is the backshift operator, i.e., BX, = x,-/; <D is a pth-order polynomial
called the autoregressive operator; e is a qth-order polynomial called the moving average
operator, and; (l-B/ is the fractional difference operator. For 0< d < 0.5, model (1) defmes a
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long-memory process with non-summable autocorrelations. If - 0.5 < d < 0, then {X,} is an
intermediate-memory process with summable autocorrelations. If d = 0, this simplifies to the
ARMA(p,q) model, which is a short-memory process. If d is an integer (l-Bl becomes the usual
differencingoperator in Box-Jenkinsmodels.
Clearly, {JG} is white noise process if d = p = q = O. The upper bound d < 0.5 is needed,
because for d ~ 0.5, the process is not stationary.rat least in the usual sense. However, in case
d > 0.5, appropriate integer differencing can constrain d to satisfy' - 0.5 < d < 0.5. Note that the
parameter d determines the long-term behavior, whereas p, q, and the corresponding parameters
of <I> (B) and 0 (B) allow for more flexible modelingofshort-range behavior.

•
When p=q=0 for the ARFlMA(p,d,q) model, we have a fractional I(d) process. An
ARFlMA(p,d,q) process may be viewed as passing a fractional I(d) process through an

ARMA(p,q) filter. That is, X, = <p(Bre(B)X; where JG- is a fractional led). Hence, the long­

term behavior of an ARFlMA(p,d,q) process may be characterized by its corresponding
fractional I(d) process.

•

The spectral density of the ARFlMA(P,d,q) processJG is given by
R(w) = lJ_eiw,-ldRARMA(W),

where RARMA(W) is the spectral density of ARMA(P,q) process given by

_u/le(e iwr
RARMA(W) - 2 .

2Jrl<p(eiw )1

The behavior of the spectral density of X, at the origin is given by R(w) - RARMA(0)lwr
2d

. Long­
range dependenceoccurs for 0 < d < 0.5 .

The following gives the moving average representation ofARFlMA(p,d,q) process:

Theorem 2.1.1. (Brockwell and Davis, 1987) Let {JG: t = 0,1,2,...} be an ARFlMA(p,d,q)
process. If d E(-0.5, O. 5), <1>(.) and 0(.) have no common zeros, and <I>(z) ¢ 0 for Izl.5" I, there is a
unique stationarysolution of equation (1) given by

r

•

<0

JG = L'I'jZ,-j (2)
j=O

where ZI is a white noise,

f'l'jBj = V d 0(B) and f'l'J < 00.

j=O <I>(B) j=O

Remark: As pointed out in Palma and Chan (1997), 'If; may be calculated as follows:
;

'1'; = LfP/'l;-j fori;;1),
j=O

where
r(l-d)

1Jj = r(j+l)r(l-d- j)

and

•
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({lj = ~ - I¢;Q'j-;' 'Po = 1, ~ = 0 for j>q.
i=\

,
I

A wavelet is defmed by
'l'a.b(t) = lar l12 rp(a- I (t-b))

where a, be R (a#O). The function rp(t)eL2(R) is often referred to as the mother wavelet and
must satisfy the admissibility condition given by k 1lf/(w)12Iwl~/dw<G\?, where If/(w) is the Fourier
transform of rp(t). This condition is required so that wavelet transforms become invertible. If rp(t)
has sufficient decay, then this condition is equivalent to 'P(O) = k rp(t) dt = O. This means that
the positive and negative areas 'under' the curve of rp(t) must cancel out.

Example I. (Haar Wavelet) Historically, the Haar wavelet (see Figure 1) is the earliest wavelet.
It represents a piecewise constant function given by

(

1 0 s t s 1/2

'I'(t) = -1 1/2 s t s 1.

. 0 otherwise

Figure 1 Haar Wavelet

Example 2. (MexicanHat Wavelet) The Mexican hat wavelet (see Figure 2) is represented by

",(I) = {t' -1lex{_I~ ).

•
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Figure 2 Mexican hatwavelet
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The continuous wavelet transform of x(t) EL2 at the time-scale location (b,a) is defined by the
inner product

< x, v;«> = larl12J x(t)'I1a- I{t-bJ) dt.
By introducing an appropriate constant c>O (in frequency unit selected by the choice of 'I1t), we
have the following mapping from scale a to frequency w

f(a) = cia = w.
One method to determine this constant c is to take the inverse wavelet transform (IWT) of a
function with a single.but unknown frequency and to match this value with scale axis.

.The wavelet transforms, < x, 'l/a,b >, satisfy the property
A< x, 'l/a,b >12 db = Jlx(t)12 dt.

Hence, they completely characterize x(t) in the L2 sense. Moreover, x(t) may be reconstructed by
the inverse transform given by

xtt) = CVI-
I JJ a-2<x,'l/a.b> 'l/a.b da db

where C,/ = 21l J 1lf/(~12 I~rld~ < ~ Admissibility J'I1t)dt=O is actually implied by the
condition CVI-I < OCJ if 'I/(t) has sufficient decay.

The discrete wavelet transform (DWT) of x(t) E L2(R) is the doubly indexed sequence {~,k.j,kE

Z}, such that ~.k = ill k x(t) 'I1i(t-k/i)) dt Note that ~.k is just the value of the continuous
wavelet transform of x(t) at the time-scale location (kit, Iii) or at the time-frequency location
(kit, ci), where c>O is a constant that depends on the choice of 'I/(t). If the time interval is
normalized to the unit interval, the support of the wavelet becomes {(n-l)T(tn-I), n2-(m-l)j so that
the wavelet covers the entire time series. Hence, for a scaling parameter, m, the translation
parameter has values n = 1,2,3, ...,2m

-
l
. Thus, for a time series of length N = 2r

, the discrete
wavelet transform (wavelet coefficients) consists of { dm,n: m E {1,2,...r}. n(m) E {1,2, ...,2m- I

} } .

The discrete wavelet transform (DWT) has a corresponding fast algorithm for signal
decomposition and reconstruction, which is efficient for both computation and implementation
on computers and processors. This algorithm is faster than the so-called Fast Fourier Transform
(FFT) used in computing the discrete Fourier transform of long time series. Moreover, the
information contained in the DWT is sufficient to determine the signal uniquely.
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We now modify the wavelets so that the wavelet coefficients of X, are uncorrelated. Define.a set
ofwavelet-like functions qm.n and qm.n such that their Fourier transforms satisfy

Qm.n(w) = Rdwr'/
2Gm.n(w),

~.n(w) = Rdw)'/2 Gm.n(w),
where if R,(w) = R(w), R(} and Gm.n(} are the Fourier transforms of .the autocovariance
function and the orthonormal wavelet gm.n(}, respectively; if is the variance of the innovation Z"

Now,
( qm.n(t); m.n eZ) = (qm(t-[mn); m.n eZ),
(qm,n(t); m,neZ) = (qm(t_j-mn); m.n eZ},

and (qm,n(t), qm,n(t)) is a biorthogonal sequence (See Lemma 13.4 of Walter, 1994). The
corresponding scaling-like functions induce a multiresolution-like analysis. If the spectral density
ofX(t) is strictly positive, then it has the expansion

X(t) = LLd*m,n qm(t-rmn). (3)
m n

with all the expansion coefficients uricorrelated, and convergence is in the mean square sense
(Theorem 13.5, Walter(1994». Note that

where the inner product is defined in the L2 sense.

3. MAIN RESULTS

In this section, we derive maximum likelihood estimators of the parameters of an
ARFIMA(p,d,q) process. If d e(-O. 5,0.5), <1>(.) and eo have no common zeros, and <1>(z) ~ 0 for
IzISJ, by Theorem 2.1.1, the moving average representation ofARFIMA(p,d,q), X, is given by

00

x, = L'IIjZ,-j.
j~O

00

where L'II~ < 00 . Hence, I'llrI~ 0 as r ~ 00. For sufficiently large r, 'IIr:::1 O. Thus, if the
j~O

expansion is truncated after r terms, where r is sufficiently large,

••

r

X (r) - ~ Z
1 - LJ'IIj /-j.

j~O

~ .
Note that (4) converges to X, almost surely. We use this truncated expression to avoid some
technicalities in determining the distribution of the wavelet coefficients.

In the following lemma and theorem we determine the distribution of d*m,n of a long­
memory ARFIMA(p,d,q) process and we derive the wavelet-based maximum likelihood
estimator of ARFIMA(p,d,q) parameters.

•
o
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SUp(t'i+\ - t,i) -+ 0 as r -+ 00
;

E (d*m.,J = E« X; qm(t-2-mn»)
= k E(XJ qm(t-2-mn) dt = o.

The variance is given by

E<X.,qm(t-2-mn»2 =E{ JX,qm(t-2-mn)dt JXsqm(s-rmn)ds}

=JJE(X,Xs)qm(t - r m n)qm(s _2-mn)dtds

= JJr(t -s)qm(t - 2-mn)qm(s- r mn)dtds.

By Parseval's identity, we have

s-:x, qm(t_2-mn»2 = J2~ JR(w)e-iSWQmn(w)e-il-"nwqm(s-rmn)dwds.

By Fubini's theorem, we get

E<X"qm(t-2-mn»2 =-d; JR(w)Qmn(w)eirlOnw {Jqm{s - 2-mn)e-i(S-rIDn)wds}e-ir ID nwdw

= ~ JR(w)Qmn(w)Qmn(w)dw =_1 JR(w) IQmn(W) 1
2 dw

2tr 2tr

=_1 Ja 2R1(w) IQmn(W) 1
2 dw =_1 (72 rlGm'n(W) 1

2 dw
2tr 2tr JI
1 1

=2tr a
2

11 Gmn(W) 11
2 = 21r a

2
•

Now,

The spectral density ofan ARFlMA(p,d,q) process is given by

R(w) = a
2

1€J(e-~) 1

2
Il-e-iw ,-2d .

2tr I (/J(e- IW
) 1

2

Since 'Il-e- iw 1= 2Sin(~W ) = (2 - 2COSWY'2, de(0,0.5), and e (z) ;t: 0 for Izi S J, the spectral

density is strictly positive. Hence, Equation (3) applies.

Lemma 3.1. Let .,ft be an ARFlMA(p,d,q) process with de(O,O.5), <1>(.) and eo have no
common zeros, <I>(z) ;t: 0 for [z] S 1, e(z) ;t: 0 for Izi S 1, and the innovations Z, - IIDN(O, d).
Then the wavelet-like coefficients d*m.nare independentN (0, (2tr}-1 d).

Now, we have

«z; qm(t-2-mn»
= JZ,_jqm(t-rmn)dt
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and lim indicates the convergence in quadratic mean. Hence, <Z'-j, qm(t-2~mn» is a limit of sums
of independent normal random variables, and has mean zero and fmite variance. By the
Continuity Theorem, it must be normally distributed. Moreover,

Cov« Z,_j,qm(t- r mn) >,< ZS_j,qm(s - r mn) »

= JIE(Z,_jZs-)qm(t - r m n)qm(s- 2-mn)dtds,

which is 0 if t ~ s. Hence, the inner products <Z'_j, qm(t-Tmn» are independent.
Consider x,(r) in (4). By linearity of inner product, we have

r r

<x,(r), qm(t-2-mn» = <L If/.jZI-j, qm(t-2-mn»
= L If/.j <ZI-j, qm(t-2-mn».

j=O j=O

Now, since x,(r) converges to X, with probability 1, the distribution ofx,(r) converges to that ofX;
Since the inner product is a continuous function, the distribution of <x,(r),qm(t-2-mn» converges
to the distribution of <x" qm(t-2-mn». Since <x" qm(t-2-mn» is a limit sum of independent
normal random variables, it must be normally distributed. Therefore, <x" qm(t-Tmn» is
distributed as N (0, (bt)"l el).

Independence of the wavelet-like coefficients d*mn follows directly from the fact that d*om are
uncorrelated. QED.

In the preceding lemma, the conditions <1>(z) ~ 0 for [z] ~ 1 and e(z) ~ 0 for Izi ~ 1 are actually
conditions for causality and invertibility of the process.

Theorem 3.2 Let (XI,X2, ... , X
2
, j be a realization of the ARFIMA(p,d,q) process under the

assumptions of Lemma 3.1. The maximum likelihood estimators of the unknown parameters
A 1\ 1\ 1\ AI\. /\/\/\/\

(;I, ...,(Jp, 0" ...,Oq,d, oj=(~ e, d, o) are (;\ ,...,;p,Ot,...,Op,d,a) = (<1>,e,d,u), where
1\ 1\ ~

~2 = 21lS(<1>,e,d)
N* '

N* is the number cfwavelet-like coefficients and S(cD,e,d) minimizes

m n

Proof.

Let X, be an ARFIMA(p,d,q) process under the assumptions of Lemma 3.1. For a time series of
length N =r, the set ofwavelet-like coefficients consists of

{ d*m,n: m E (l,2, ....r}, n(m) E {1,2, ...,r-Ij j.
Let M = (1,2, ....r} and N(m) = {I,2,...,r-1j. Since (d*m,n: m,nEZj are independent N(O, (2ft)"
'el), the likelihood function is

/

•
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L((/J,e,d,aj=n n
"'eM "eN(m)

Hence, the loglikelihood is

1
exp

[

- 7[ 'd. 2]"',"

65

"IId· m,, 2

InL( <1>, 0, d, CT) =-N • InCT _ --:.:.;m,---,,-"....,,--­
CT

2

Maximizing this with respect to the unknown parameters, the maximum likelihood estimators are
1\ 1\ 1\ 1\ 1\/\ 1\1\.1\/\

given by (¢J, ,...,¢J p,B" ...,Bp,d,CT) =(<I>,0,d,CT), where
1\ 1\ ~

1\ 2 2JZS(<I>, 0, d)
CT =---'----'-

• N* '

and N* is the number of wavelet-like coefficients. Substituting
2JZS(<I>,0,d) 2

to CT m
N*

In(<I>,0;d,CT), we have the following

In(<I> 0d CT) = - N * In( 2,,)_N * In(S(<I>,0,d)) _ N *.
, , , 2 N* 2 N*· 2

1\ 1\ ~

Thus, S(<I>,0,d) minimizes

S(<I>,0,d) =IId*m,,2 •

In "

QED

The following lemma will be used to derive the Fisher jnformation matrix of the wavelet-like
coefficientd*m,n ofARFlMA(O,d,O), de (0,0.5).

Lemma 3.3 If d*m,n is the wavelet-like coefficient in Lemma 3.1 of ARFIMA(O,d,O) process,
then

i)

ii)

..

•

Proof.

To show (i),

~(d:n a~d:,,) =E fX,qm"Ct-2-mn)dt ~ fXsqmn(S-Tmn)ds

By Leibnitz's rule of differentiating an integral we have

E(d:n~d:n )=E fX,qm,,(t-2-mn)dt fXs :d qmn(S - 2-
mn)ds
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= IJE(X,Xs)qm(t - 2-mn)~qm(S - T m n)dtds
. ad

= JJr(t - s)qm(t - 2-m n) :d qm(s - 2-m n)dtds .

By Parseval's identity, we have

( · a.) JI J' T
m aE dmnad dmn = 21r R(W)e-1SW Qmn(w)e- I nw ad qm(s- 2-mn)dwds.

By Fubini's theorem,we get

(
. a .)

E «: addmri

= 2~ JR(~)Qmn(W)ei2-"nw{:d Jqm(s - r m n)e-i(s-2-
mn)w

ds}e-ir mnwdw

I J a= - R(w)Qmn(w)-Qmn(w)dw
21r ad

= 2~ JR(w)Qmn(w)~ R.-)/\w)Gmn(w)dw

=_1 JR(w) IQmn(W) 12In12sin(w/2) 1dw
21r

=_1 J0"2 R)(w) IQmn(W) 1
2 In12sin(w/2) I dw

21r

=_10"2 rlGmn(w)12In12sin(w/2) Idw
21r JI

Integratingby parts and noting that JlGmn(w) 12dw =I, we have

E(d:n~d:n) = (12 (lnI2sin(w/2)t-Inlsin(w/2)IIJ = (12 (In 21 )=0,
~ ~ ~ A

where A is the passband ofGmn(.) .

To show (ii), by an analogous' argument to the proof of (i), we have

~d:" ~, d:") =~u' LiG~(w)I'ln'12sin(wI2)ldw

Integrating by parts and noting that JIGmn (w) 12dw = I , we have

E(d:n a
2

2 d:n )=(12 ~n212sin(W/2)11 - !cot(w/2)lnI2Sin(w/2)ldw}
ad 21r A .

Integrating the second term by parts, we get

E(d:n~d:n) = (12 (In 221 ) = O. QED.
ad 21r A

...

•

..

•



The Philippine Statistician, 2000 67

••

•

•

•

Theorem 3.4 If d*m,n is the wavelet-like coefficient in Lemma 3.1 of ARFIMA(O,d,O) process,
then the Fisher information matrixof (dll,dI2,...,d2,_,J is given by

~ ~ [Amn 0]I(d, a) =; L..J L..J 2
mEM nEN(m) 0 2/ a

where Amn is the inverse Fouriertransform of {Gmn (w)}2In2(2sin(w/ 2» at t =rr'«

Proof.

The loglikelihood function of d*mn is given by
n "2

InL(d, o) =-In a - -2dmn •
U

Hence,

E(aInL(d,U») = 2+ 21t E(d:~) = 2+J..=o.
au a a 3

• U a
Moreover, by Lemma 3.3

,1alnL(d,U») = -1t2,1d'. ~d" ) = O.
L"~ ad . u2 L"~ mn ad mn

Now,

( a
2

) 1a
2

[ . 1t"2 ]) ( a [1t a "2 ]JE ---InL(d e) =- -- -Inu--d = E - --daoad' aoad u2 mn au u2ad mn

= -41Z' ,1d'. ~d" )
u 3 L"l mn ad mn

By Lemma 3.3, we have

E(-a~lnL(d,o+ o.
Similarly,
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E(-~InL(d,O")) = E(~[-lnO"-!:...d02]~[-In;-!:...d02]J = 0aafJd au u2 mn ad u2 mn

Now, • I

J a
2 ) ( a [ 1 21r 02]J - J[~2 - ~1r4 dm

02
n]JLJl- aafJO" InL(d, 0") = -E au - u+ u3 dmn = Lll v v

=_(_1_61r Efd02 )~= 2.
2 4 ~ mn 2 •

U 0" ,U

Similarly,

( a [ 1r 02] a[ ,1r 02]J- ,[-1 21r d02]2JE- -InO"--d - -Inu--d - -+- .
a 2mna 2mn' 3mn

U U U U U U

= E(_I__41r d02 41r
2 d04)

2 4 mn+ 6 mn •
U U a

Since E(d:~) ~ ~; and E(d::) ~ 3(~;rthen

E(~[-lnu-!:...d·2]~[-InO"-!:...d0-2]J = 2..a 2 mn a 2 mn ,...2
0" U U 0" v

Thus,

Now,

~d:n = :d jX,qmn(t-rmn)dt

By Parseval's identity, we have

~do = _1~ JX(w)Q (w)e- i2
-
mnwdw= _1 JX(w)~Q (w)e- i2

--
nwdwad mn 21r ad mn, 21r ad mn

= _1 JX(W)Qmn(w)eir-nw In 12sin(w/2) Idw
21r

Let

.'

•

•
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Hence,

Thus,

a. J----ad dmn = X ,b(l)dl.
o

•

•

•

•

~~ d;'")' = E fIX,X, b(t)b(s)dtds = fIE(X,X, )b(t)b(s)dtds

= fJR(I - S)b(l )b(s)dlds .

By Parseval's identity and Fubini's theorem, we have

E(~d:n)2 = _1 JR(w)B(w)[Jb(s)e-iwSds~
ad 2tr

2 •IJ - UJ -= - R(w){B(w)}2dw= - R.(w){B(w)}2dw
2tr 2tr
u 2

.
=- JR,(w){Qmn(w)}2ln212sin(w/2) Ie'lWdw

2tr
2 2

=z: J{Gmn(w)}2ln212sin(wl2) IeilWdw =~Amn
2tr 2tr

where Amn' is the inverse Fourier transform of {Gmn(w)}2ln
2(2sin(w/2» at t = rr!« Thus,

(
a ,.)2 u 2

E ad dmn = 2tr A mn·

We then have

(
a a ) ~ - tr a .2 - tr a .2 )E -lnL(d,a)-lnL(d,a) = -2-dmn·-2,-dmn .

ad ad a ad aad
ByLemma 3.3

(
a . a ) _ 4tr

2 (.2 \r.'( a .)2E -lnL(d,a)-lnL(d,u) --4E\dmn}C- -dmnad ad a ad

( )

2
2tr a.

= a 2 E ad dmn = Amn'
Moreover,

ByLemma 3.3
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Hence;

Gonzaga and Bonzo: Wavelet-based
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ofARFIMA(p,d,q) Parameters
,

E(~lnL(d,U)~lnL(d,u)) = E(- a
2

2 lnL(d,U)) = A mn •
ad ad ad .

Thus, the Fisher information matrix ofd"m.n is

[
Amn 0][(d,u) = 2 .o 2/u

By independence of d*m.n, the Fisher information matrix of (d
",

d, 2 , .. ·, d2r-1,)

" ,,[Amn 0]ltd, u) = L.J L.J 2 .
meM neN(m) 0 2/ U

is given by

QED.

•

This Fisher information matrix may be used to assess the statistical efficiency of the maximum
likelihood estimators ofARFIMA(O,d,O) parameters.

4. CONCLUDING REMARKS

In this paper, we modified the wavelets and the wavelet coefficients. Hence, Mallat's
algorithm in computing the wavelet coefficients dmn is not directly applicable to the computation
of the wavelet-like coefficients d*m,n • An algorithm for this purpose may be designed in future
research. Nevertheless, we proposed an exact maximum likelihood estimation procedure in
estimating both the short- and long-memory parameters of a long-memory process, which is not
dependent on the choice of the wavelet basis functions. This proposed method would also allow.
us to exploit the independence of the wavelet-like coefficients in investigating other statistical
properties of the estimators.
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